Guest guest Posted April 6, 2010 Report Share Posted April 6, 2010 _http://www.cdc.gov/EID/Content/15/5/788.htm_ (http://www.cdc.gov/EID/Content/15/5/788.htm) Probable Congenital Babesiosis in Infant, New Jersey, USA Emerging Infectious Diseases Volume 15, Number 5–May 2009 Sonia Sethi, David Alcid, Hemant Kesarwala, and Robert W. Tolan, Jr. Author affiliations: The Children's Hospital at Monmouth Medical Center, Long Branch, New Jersey, USA (S. Sethi); Saint Peter's University Hospital, New Brunswick, New Jersey, USA (D. Alcid, H. Kesarwala, R.W. Tolan, Jr.); Robert Wood Johnson Medical School, New Brunswick (D. Alcid); and Drexel University College of Medicine, Philadelphia, Pennsylvania, USA (H. Kesarwala, R.W. Tolan, Jr.) Abstract Only 2 neonates with transplacentally or perinatally acquired (congenital) babesiosis have been reported. We describe a probable third congenital case of babesiosis in a 26-day-old infant; transmission was determined on the basis of a blood smear from the infant (15% parasitemia) and serologic results from the infant and mother. Victor Babes first described the pathogen of babesiosis in 1888 (1). Babesiosis is a tick-borne malaria-like illness transmitted by the same Ixodes spp. ticks that transmit Borrelia burgdorferi (2). It is endemic to the northeastern and northwestern United States and also occurs in Europe and parts of Asia. Babesiosis is an intraerythrocytic parasitic infection that ranges from subclinical to severe (possibly fatal) disease with fever, thrombocytopenia, hemolytic anemia, and hyperbilirubinemia. Appropriate antimicrobial drug therapy, transfusion, and exchange transfusion remain the mainstays of treatment. Babesiosis occurs rarely among neonates, although it is gaining increasing attention as an emerging tick-borne zoonosis. In 1987, Esernio-Jenssen et al. (3) reported an apparent case of transplacentally or perinatally transmitted congenital babesiosis. In 1997, New et al. (4) reported another case. We describe a third case of probable congenital babesiosis in a 26-day-old infant with 15% parasitemia. She was treated successfully with atovaquone (Mepron; GlaxoSmithKline, Research Triangle Park, NC, USA) and azithromycin (Zithromax; Pfizer, New York, NY, USA).... Conclusions Of 10 cases of babesiosis in neonates that have been reviewed (5), 2 were congenital (3,4), 2 were transmitted by a tick bite (6), and 6 were associated with transfusions (5,7–9). The 2 congenital cases (3,4) are compared to our probable congenital case (Table 2). All 10 of the affected neonates were reported to have <9% parasitemia (5). The illness ranged from no symptoms in 2 infants transfused with contaminated blood (8) to symptomatic disease (as in our infant) with fever and hepatosplenomegaly in 5 of 7 (71%), hemolytic anemia in 8 of 10 (80%), indirect hyperbilirubinemia in 4 of 5 (80%), and thrombocytopenia in 7 of 9 (78%) (5). Five of 8 (63%) patients required erythrocyte transfusion (5). The infant we describe had all of these manifestations as well as a higher parasite count than described previously (5). Clearly, the spectrum of neonatal babesiosis is variable and must be more fully elucidated, as must determinants of the illness's clinical course and parasite clearance. In neonates, the degree of parasitemia may not parallel the severity of the babesiosis. The combination of quinine sulfate and clindamycin hydrochloride for treatment of a newborn with transfusion-associated babesiosis was described in 1982 and subsequently became the first accepted treatment (7). A combination of azithromycin with atovaquone for 7 to 10 days has emerged as an alternative regimen (8,10–11), having been used successfully in 2 neonates (8,10) and several adults (11) in whom it appears to be safe and effective. Finally, the addition of azithromycin or atovaquone to the clindamycin hydrochloride plus quinine sulfate regimen has been proposed (2,8), particularly if parasitemia is slow to resolve. Recently, our understanding of babesiosis and the methods of testing for it have improved dramatically. Because babesiosis (and congenital babesiosis) is an emerging tick-borne zoonosis, it is worthwhile to review the state-of-the-art approach to its diagnosis in the context of the limitations to diagnosis inherent in this particular case, including its retrospective nature, the mother's lack of insurance and resultant unwillingness to undergo any additional laboratory testing, and the loss to follow-up of the infant and her migrant family. Diagnosis of congenital babesiosis requires definitive evidence of babesiosis, including evidence from reference laboratory species-specific IFA testing, PCR confirmation, and evidence from reference laboratory evaluation of peripheral blood smears, particularly blood smears with high parasitemia (necessary because of the numerous species of Babesia endemic to the United States, including B. microti, B. divergens–like, B. duncani, MO-1, CA-1, and WA-1). Accurate diagnosis also requires collection of extensive epidemiologic information about patients with suspected infections, including their recent and remote travel history, exposure to ticks, transfusion or transplant. Follow-up for recrudescence is important, particularly for the immunocompromised patient. Our report of a probable third case of congenital babesiosis illustrates the variability in the manifestations and clinical course of the illness, suggesting a need for improvement in how the disease is recognized and for evaluation of current treatment modalities. view full article with references here: _http://www.cdc.gov/EID/Content/15/5/788.htm_ (http://www.cdc.gov/EID/Content/15/5/788.htm) .. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.