Jump to content
IndiaDivine.org

Memory Effect of Water

Rate this topic


Guest guest

Recommended Posts

Digital Biology

and the Memory

Effect of Water

 

with Jacques Benveniste, M.D.

 

by Wynn Free

 

http://www.spiritofmaat.com/archive/dec3/bveniste.htm

 

Will the eternal " Understand I do not, therefore it is not " prevail

forever in science? Can we not say once and for all " bye-bye " to

Galileo-style prosecution and replace it with genuine scientific

debate? Given my painful ten-year experience, we may as well start by

throwing out the " pire-review " system which has become, behind its

facade of excellence, the main antibody blocking the nearly deceased

scientific free exchange which once was the cornerstone of scientific

progress.

—Jacques Benveniste, M.D.

 

 

Dr. Jacques Benveniste is a medical doctor who has discovered certain

scientific properties of water which defy explanation by the tenets of

mainstream physics. His science, which he calls Digital Biology, is

based upon two breakthrough observations that he can prove in

experiments that have been duplicated by other scientists:

 

1. If a substance is diluted in water, the water can carry the memory

of that substance even after it has been so diluted that none of the

molecules of the original substance remain; and

 

2. The molecules of any given substance have a spectrum of frequencies

that can be digitally recorded with a computer, then played back into

untreated water (using an electronic transducer), and when this is

done, the new water will act as if the actual substance were

physically present.

 

The applications of Digital Biology are endless. Some of them include

digital fertilizers and growth enhancers, detection of contaminating

organisms in agriculture, digital pharmaceuticals, digital

homeopathics, water analysis and purification, and electromagnetic

pesticides.

 

Dr. Benveniste is a French medical doctor and researcher who studied

at the Scripps Institute in La Jolla, California, for three years. We

spoke with him by phone at his research facility in Paris, France.

 

Wynn: Could you just briefly state what it is that you have discovered?

 

Jacques: It's known as the " memory of water. " When you add a substance

to water and then dilute the water to the point where there are no

more molecules of the added substance left in the water, you can still

measure effects of the water as if the originally diluted substance

were still present.

 

Wynn: What made you curious enough to start your research?

 

Jacques: It was an accident. There was a technician in my lab who

accidentally diluted more than she thought, and realized that for the

amount of molecules that were left there shouldn't be any indication

of the original substance. But there was.

 

We kept diluting, and the action kept coming back. So we knew we had a

new phenomenon.

 

Wynn: That would it mean if I had a giant lake and I poured something

into the lake...?

 

Jacques: No, it doesn't work that way.

 

First you have to add the substance to the water in a fixed

proportion: one to ten, one to a hundred, one to a thousand... So it's

a very small amount of information that you bring.

 

Wynn: Why do you think those specific proportions are meaningful?

 

Jacques: We don't know. But out of serendipity and experience, we have

shown that without those proportions, it doesn't work as well.

 

Then, between each dilution, you have to agitate violently for 20

seconds to incorporate the little amount of information you put into

the test tube.

 

So for instance you might put one drop of the diluting medium into

nine-hundred-ninety-nine drops of water, then agitate for twenty

seconds with a violent motion — in what we call a vortex.

 

Only then do you get the transmission of the information.

 

You wouldn't be able to shake your lake.

 

Wynn: A vortex is like a spiral?

 

Jacques: Exactly, like a funnel inside of the water.

 

Wynn: How do you determine that the water has the memory of the

original substance?

 

Jacques: You get a specific effect.

 

Here's an example. Let's say that you apply a histamine to the skin of

an animal and it creates an irritation, like a blister. Then if you

apply water that has been given the memory of histamine to the skin of

the same animal, you will also end up with a blister. That's what I

mean by a specific effect.

 

We added histamine to an isolated guinea-pig heart and found that the

effect was the same whether we used a high dilution or the original

strength. We did the same with other compounds and got the same result.

 

We can take this one step further. We can record the activity in the

water that has a diluted substance on a computer, and then play the

recording to untreated water. And the computer-treated water will have

the same effect as the water that was treated with an actual substance

and diluted.

 

Wynn: Let me see if I understood what you just said. Instead of

putting the substance in the water, you can put the frequencies of the

substance in the water?

 

Jacques: We don't like to use the word " frequency, " because that

implies we know what the frequency is. In fact, it's exactly the same

thing when you record something on your computer — a song or a voice —

and then you replay it. Your ear is vibrating the same way as if the

person were in the room. The ear is fooled by the recording. The ear

reacts just as if the singer were singing live in the room. You don't

know the frequencies involved, you just know that the voice coming out

of the speaker exactly emulates how the singer would sound if they

were live in the room.

 

In the same way, you can record the frequency spectrum of a substance.

 

Wynn: By what interface do you get the spectrum from the treated water

into the untreated water?

 

Jacques: Instead of replaying to a loudspeaker, we use the loudspeaker

outlet of the sound card, and plug in a copper coil. The frequency

spectrums are always within the audio range of 20 to 20,000 cycles per

second.

 

The point is that we have solved one of the mysteries of classical

biology. The phrase " molecular signal " is one of the most used

references in biology, except no one has known or asked, " What is the

physical nature of the signal? " And we have discovered that at least a

good representative signal of the molecule is between 20 and 20,000

Hertz, which makes sense, as only a low frequency can get through water.

 

Wynn: How do you record a signal from a substance?

 

Jacques: Think of a microphone without a membrane, just an

electromagnetic coil. You plug that electronic coil into the female

receptacle of the sound card. Then you put the molecules in a test

tube next to the coil. When those millions of molecules in this liquid

vibrate, it's enough for the coil to pick them up.

 

We are just using commercially available components to measure this.

 

Wynn: So these experiments sound as though they can be duplicated very

easily.

 

Jacques: Actually, it takes very stringent conditions for the

experiment to be repeatable. That's because when you replay to water,

the water may or may not take the signal, depending upon local

electromagnetic conditions.

 

For example, now you are recording my voice on tape, and if you put a

magnet over the tape, you will erase my voice. But if we were talking

face to face, you could put the magnet in front of my mouth and you

would still hear my words. So there is a difference between the

electromagnetic recording and the real voice, even though they both

sound the same.

 

So the electromagnetic fields in the environment affect whether or not

the signal is transferred back to the water.

 

A lab in Chicago duplicated my experiment where they recorded 26

samples, of which half, or 13, were a control group of random

frequencies, and half were actual molecular signals of various

substances. Then they sent the untitled computer .wav files to me — so

my lab didn't know which was which. But we were able to recognize and

identify the 13 real substances, as separate from the control, with a

very high significance.

 

When I published this, no one believed it at first. They thought it

was impossible to send molecules over the Atlantic. But they never

could point to anything wrong with the experimental protocol.

 

Wynn: What is it in water that holds the memory?

 

Jacques: This is the multimillion-dollar question. People will have to

rethink the ideas they have on water.

 

From the get-go, water doesn't behave as it should. There are more

than 30 physical constants of water that are " wrong. "

 

For example, water is a mixture of two gases, hydrogen and oxygen,

that become liquid at ordinary room temperature. That's totally

impossible. Water shouldn't exist.

 

Why is water liquid? The physicists don't understand this. None of

this can really be understood by the common laws of physics. So even

though it's inexplicable, all I can do is to repeat my experiments and

demonstrate that it works.

 

Wynn: What's the connection between your discoveries and homeopathy?

 

Jacques: That has actually become an area of controversy. I am not an

alternative practitioner, but a very classical doctor. But I was

accused of supporting homeopathy. Regular doctors get very upset when

you do something that seems to validate homeopathy.

 

Yet my experiments do show irrefutably that even when you highly

dilute a compound, you can still get activity. So in essence my

experiments give a scientific explanation of how homeopathy can work.

 

It's like a CD. When you break open a CD, the singer is not inside.

But you can get the same effect. You don't need the real thing.

 

Wynn: What are some of the other applications of your discovery?

 

Jacques: One application is that you can put a detector anywhere in

the world and detect any bacteria that are around. You can go to the

middle of nowhere in Africa, and if you have a telephone or satellite,

in seconds you can send anywhere the signal of the bacteria which are

in proximity to the detector. You can then identify the specific

bacteria. We do it every day in the lab.

 

The old way of doing this is to manually collect samples of water and

send it to the CDC (Centers for Disease Control), where they will

manually analyze the water for traces of bacteria.

 

Wynn: So if you were working with a very contagious bacterium, you

could analyze it without being in direct exposure to it. But couldn't

the signal of the bacteria make someone sick?

 

Jacques: I don't believe so, unless you would put this person inside

of a huge coil and send thousands of watts with the signal of the

bacteria through the coil. Then if the bacteria generated a toxin in

the body, the toxin could be duplicated through the coil. But by

diffusing the signal in the air, it would just be too weak.

 

Wynn: What are some other applications?

 

Jacques: We think we could detect the AIDS virus at concentrations way

below what is commonly measurable. If someone is contaminated with

AIDS, there is a period where the antibodies do not appear, yet the

person is very contagious. This is a nightmare for blood banks. This

could be done very cheaply as compared to DNA analysis.

 

So far, we are working on a very small budget, so we've haven't been

able to develop these protocols yet.

 

Another application would be killing pests with the field. This would

allow pests to be eliminated without contaminating the environment

with toxic chemicals.

 

Wynn: How have you funded your experiments?

 

Jacques: I am not funded at all. I have created a company with my

collaborator called Digi-Bio. We financed our company with small

investors, but we are currently looking for larger sponsors so we can

develop applications for this technology. There are many other

possible applications yet to be discovered and proven.

 

Right now there are only three people working on this project. But

someday I believe there will be thousands of researchers experimenting

on this technology, and then the applications will develop fast. But

perhaps that will be 30 years from now.

 

There's nothing described in physics that explains why, when you put

two molecules in proximity to each other, there would be any kind of

exchange of information except with radioactive substances. The only

way that molecules could communicate is by their vibrations. It is

known that molecules vibrate. This has been known for 50 years.

 

So what we are saying is that the vibration is not separate from the

molecule. And these vibrations are the way molecules communicate.

Digi-Bio is demonstrating the validity of this communication, and this

is a significant breakthrough.

 

Wynn: Thank you very much for taking your time to explain this

research to our readers.

 

Jacques: Thank you for giving me the opportunity.

 

 

 

 

 

NOTE: This is a bilingual pun: The French word pire, which is

pronounced the same as the English word peer, means " worse. "

 

Dr. Jacques BenvenisteJacques Benveniste is a Doctor of Medicine and a

former resident of the Paris Hospital System and research director at

the French National Institute for Medical Research. He is known

worldwide as a specialist in the mechanisms of allergy and

inflammation, and achieved recognition in 1971 by his discovery of Paf

(Platelet Activating Factor), a mediator implicated in the mechanisms

involved in allergy pathologies (for example, asthma).

 

In 1984, while working on hypersensitive (allergic) systems, by chance

he brought to light the so-called " high dilution phenomenon, " which

was picked up by the media and labeled " the memory of water. "

 

The DigiBio website contains a wealth of information about

experimental protocols that support Dr. Benveniste's discoveries, the

many applications to which this new technology might be put, and the

beginnings of a theory to explain how molecules actually communicate.

You can contact him by email at JBenveniste.

Link to comment
Share on other sites

Join the conversation

You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...